mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

نویسندگان

  • Michela Palmieri
  • Rituraj Pal
  • Hemanth R. Nelvagal
  • Parisa Lotfi
  • Gary R. Stinnett
  • Michelle L. Seymour
  • Arindam Chaudhury
  • Lakshya Bajaj
  • Vitaliy V. Bondar
  • Laura Bremner
  • Usama Saleem
  • Dennis Y. Tse
  • Deepthi Sanagasetti
  • Samuel M. Wu
  • Joel R. Neilson
  • Fred A. Pereira
  • Robia G. Pautler
  • George G. Rodney
  • Jonathan D. Cooper
  • Marco Sardiello
چکیده

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Activation of Lysosomal Exocytosis Promotes Cellular Clearance

Lysosomes are cellular organelles primarily involved in degradation and recycling processes. During lysosomal exocytosis, a Ca²⁺-regulated process, lysosomes are docked to the cell surface and fuse with the plasma membrane (PM), emptying their content outside the cell. This process has an important role in secretion and PM repair. Here we show that the transcription factor EB (TFEB) regulates l...

متن کامل

A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB

The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the l...

متن کامل

Genetic and Chemical Activation of TFEB Mediates Clearance of Aggregated α-Synuclein

Aggregation of α-synuclein (α-syn) is associated with the development of a number of neurodegenerative diseases, including Parkinson's disease (PD). The formation of α-syn aggregates results from aberrant accumulation of misfolded α-syn and insufficient or impaired activity of the two main intracellular protein degradation systems, namely the ubiquitin-proteasome system and the autophagy-lysoso...

متن کامل

The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017